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Introduction :

La gestion a long terme des déchets nucléaires de haute activité constitue I'un des défis technologiques et environnementaux majeurs du XXI e siecle. Cependant, les contraintes
techniques, économiques et sociétales associées a ces infrastructures ont stimulé la recherche d'alternatives plus flexibles. C'est ici qu'intervient le stockage en forages profonds verticaux qui
s'impose aujourd’hui comme une voie prometteuse pour le confinement durable des déchets radioactifs a haute activité a vie longue. Le principe du stockage vertical consiste a forer un puits
dans le socle cristallin stable [3] jusqu’'a des profondeurs de 4 a 5 kilometres [1], puis a y déposer des conteneurs de combustibles usés ou de déchets vitrifiés dans la partie inférieure du trou.
La partie supérieure sera, scellée a I'aide de matériaux a tres faible perméabilité [4]. Plusieurs pays et organisations internationales explorent sérieusement la voie des puits verticaux profonds
pour le stockage des déchets radioactifs, comme dans le programme coordonné de I'International Atomic Energy Agency (IAEA) avec le projet Deep Borehole Disposal Options regroupant 15
pays dont la Chine, le Danemark, I’Egypte, la Finlande, I'Allemagne, I'Indonésie, les pays-bas, la Malaisie, la Norvege, la Russie, la Slovénie, I'Ukraine, et les Etats-Unis.

Comment est structuré le stockage vertical et quels en sont les avantages ?
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Le stockage (3-5 km de profondeur) repose sur
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Figure 2 : Canister type utilisé pour le stockage ( Heerens,G.J 2024) Figure 4 : Structure compléte du stockage ( Brady.PV 2017 Gibb, F., 2024)

IV —Avantages et Inconvénient

Les avantages : Les inconvénients :

Tableau 1 : Colt d'installation d'un forage vertical (Brady, P.V.2017)
@mmmm - Moins coliteux [2] - Aucune capacité de récupération [4]
- Moins de surface nécessaire - Pas assez de test et de recherche
— . - Moins d'ingénierie lourde - Pas assez de fiabilité a long terme
Drilling, Casing, and Borehole £37 296,587 - Plus difficile d’'accés une fois fermé - Pas adapté a certain déchet producteur de chaleur
Completion S donc sécurité excellente - Qualité et inspection en profondeur
Waste Canisters and Loading 57,625 600 - Plus rapide 3 construire

mi H . Figure 5 : Différents déchets inapte au stockage vertical
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Cost per
Borehole

Spent MOX
nuclear fuel fuel

Waste Canister Emplacement

Borehole Sealing 52,450,146 Certains déchets ne sont pas adaptés thermiquement au stockage vertical profond car leur puissance thermique dépasserait les
Total 540,151,333 limites de température supportées par la roche hote [1]. Dans un puits vertical de faible diametre, la chaleur se dissipe lentement dans
le socle cristallin, ce qui peut conduire a des températures supérieures a 100-200 °C, seuil critique pour la bentonite par exemple le
combustible usé récemment déchargé d'un réacteur, certains déchets vitrifiés HA trés exothermiques, ou encore des éléments de
combustible MOX peu refroidis génerent une densité thermique incompatible avec les conditions confinées d'un forage vertical [1].

onciusion

Le forage vertical profond constitue une approche innovante pour le confinement a long terme des déchets radioactifs. En s'appuyant sur des formations géologiques stables et
faiblement perméables, qu'il s'agisse de socles cristallins, d'argilites ou de roches salines, cette solution exploite les propriétés naturelles du sous-sol profond pour limiter les transferts d'eau et
garantir l'isolement des radionucléides avec un systeme de protection reposant sur la combinaison de barriéres successives.

Bien qu'il ne remplace pas les stockages géologiques horizontaux classiques, le forage vertical profond représente une alternative robuste, moins colteuse et plus accessible,
particulierement adaptée aux pays dont les infrastructures ou les moyens financiers sont limités. Sa mise en ceuvre, plus compacte et plus modulable, permet d'atteindre des zones profondes
stables tout en minimisant I'empreinte en surface. Ainsi, cette technologie offre une voie crédible et efficace pour garantir un stockage optimal et slr des déchets radioactifs a haute activité,
répondant a la fois aux contraintes techniques, environnementales et économiques. Malheureusement le manque de test, d'expérience et de REX réduit considérablement la fiabilité de ce
stockage mais les résultats déja obtenu permette d'étres optimiste pour le futur du stockage vertical.
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