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/ | — Introduction \

L'exploration de Mars impose de comprendre avec précision son environnement radiatif, un facteur clé pour la sdreté des missions robotiques et humaines. Depuis l'atterrissage
de Curiosity le 6 aodt 2012, l'instrument MSL/RAD (Mars Science Laboratory / Radiation Assessment Detector) fournit les premieres mesures directes et continues du
rayonnement a la surface martienne. Cependant, il faut d'abord poser les bases des connaissances que l'on a sur Mars. En effet, la planete rouge n'a pas les mémes défenses que
la terre face au rayonnement cosmique pour deux principales raisons : son atmosphere moins dense et l'absence d'un champ magnétique. De part ses caractéristiques,
I'ambiance radiologique a la surface de Mars est différente de la celle sur Terre. On peut alors se demander :

\ L'ambiance radiologique a la surface de Mars est-elle une contrainte majeure dans la planification des missions habitées ? /
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/" Conclusion N

Ces études mettent en évidence que le rayonnement a la surface de Mars constitue une contrainte majeure pour les missions habitées. Le débit de dose varie significativement selon la
pression atmosphérique locale et est également modulé par l'activité solaire, avec des niveaux jusqu’'a 1,13 fois plus élevés au minimum solaire. Sur une mission de 500 jours sur Mars et en
tenant compte du trajet aller-retour, les astronautes pourraient ainsi recevoir une dose qui représente une exposition pour la santé humaine pouvant entrainer de nombreux effets
stochastiques (cancer, tumeur, etc). Ces résultats soulignent I'importance de prendre en compte les contraintes radiatives dans la planification des missions d'habitation sur Mars avec le
choix des sites d'atterrissage (pression atmosphérique), la période (activité solaire), la durée des s€jours et la conception des habitats et protections afin de limiter les risques biologiques liés

\aux rayonnements cosmiques. /
2. : N
Bibliographie

Zhang, J., Guo, J., Dobynde, M. |, Wang, Y., & Wimmer-Schweingruber, R. F. (2022). From the top of Martian Olympus to deep craters and beneath: Mars radiation environment under different atmospheric and regolith depths.

B. Ehresmann, C. Zeitlin, D.M. Hassler, J. Guo, R.F. Wimmer-Schweingruber, T. Berger, D. Matthia, G. Reitz (2023). The Martian surface radiation environment at solar minimum measured with MSL/RAD.

Matthia, Daniel & Ehresmann, Bent & Lohf, Henning & Kohler, Jan & Zeitlin, Cary & Appel, Jan & Sato, Tatsuhiko & Slaba, Tony & Martin, Cesar & Berger, Thomas & Boehm, Eckart & Boettcher, Stephan & Brinza, David & Burmeister, Soenke & Guo,
Jingnan & Hassler, Donald & Posner, Arik & Rafkin, Scot & Reitz, Guenther & Wimmer-Schweingruber, R.. (2016). The Martian surface radiation environment — a comparison of models and MSL/RAD measurements.

KLisa C. Simonsen, John E. Nealy, Lawrence W. Townsend, and John W. Wilson (1990). Radiation Exposure for Manned Mars Surface Missions. /

Xlle edition du Forum RESNUC
17 & 12 février 2026

N®13




Crewed missions to Mars e

M E‘”im‘se'g . rORUM RES%“C .
MAZUREK Bastien

Master 1 — Risques Environnementaux et Slreté Nucléaire

/ | — Introduction \

The exploration of Mars requires a precise understanding of its radiation environment, a key factor for the safety of both robotic and human missions. Since the landing of
Curiosity on August 6, 2012, the MSL/RAD instrument (Mars Science Laboratory / Radiation Assessment Detector) has been providing the first direct and continuous
measurements of radiation at the Martian surface. However, it is first necessary to establish the fundamentals of what we know about Mars. Indeed, the Red Planet does not
have the same defenses as Earth against cosmic radiation for two main reasons: its atmosphere is much less dense, and it lacks a magnetic field. Because of these characteristics,
the radiological environment at the surface of Mars is very different from that on Earth. This leads us to the following question:

\ Is the radiological environment at the surface of Mars a major constraint in planning crewed missions? /
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These studies highlight that radiation on the surface of Mars constitutes a major constraint for crewed missions. Dose rates vary significantly depending on local atmospheric pressure and
are also modulated by solar activity, with levels up to 1.13 times higher during solar minimum. Over a 500-day mission on Mars, including the round-trip journey, astronauts could receive a
dose representing a level of exposure to human health that may lead to numerous stochastic effects (cancer, tumors, etc.). These results underscore the importance of considering radiation
constraints in planning crewed missions to Mars, including the choice of landing sites (atmospheric pressure), timing (solar activity), mission duration, and the design of habitats and
shielding to mitigate the biological risks associated with cosmic radiation.
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