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/Introduction

La protection contre les rayonnements gamma demeure un enjeu majeur en médecine, en industrie et dans les systemes embarqués. Bien que le plomb reste le matériau de référence grace a
son numéro atomique et sa densité élevés, son poids, sa toxicité, sa rigidité et ses contraintes reglementaires limitent son utilisation dans les technologies modernes, notamment les équipements
portables et les structures légeres.

Ces limitations ont encouragé le développement de matériaux de radioprotection alternatifs, en particulier les composites polymeres renforcés. Les travaux de Shahzad (2023) montrent que les
solutions actuelles s'orientent vers des matériaux offrant une bonne efficacité massique, méme avec une densité bien inférieure a celle du plomb. Parmi eux, les nanomatériaux carbones, et
notamment le graphéene, sont particulierement prometteurs grace a leur faible masse, leur résistance mécanique et leur non-toxicité.

Dans cette perspective, I'étude de Filak-Medon et al. (2024) propose un composite innovant Graphene (carbone) /ABS (Acrylonitrile-Butadiene-Styrene, un thermoplastique commun, concu pour
concilier légereté, stabilité structurelle et performances d'atténuation aux énergies y. L'objectif de ce travail est d'analyser ce matériau, d'évaluer ses propriétés radiologiques et de déterminer dans
Welle mesure il peut constituer une alternative légere et moderne aux blindages classiques au plomb, en s'appuyant sur les tendances mises en évidence par Shahzad (2023) et Gulbicim (2025). /
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Conclusion \

L'étude de Filak-Medon et al. (2024) demontre que le composite Graphene/ABS constitue une alternative prometteuse au plomb pour les applications ou la légereté est un critere déterminant.
Malgré une densité environ dix fois plus faible (1,064 g/cm3 contre 11,34 g/cm3), ce matériau atteint des coefficients massiques supérieurs a 0,20 cm?/g aux hautes énergies, ce qui le place
parmi les composites |égers les plus performants. A 122 keV, son coefficient linéaire (= 0,15-0,20 cm™?) reste naturellement inférieur au plomb (= 1,24 cm™), mais la comparaison massique lui est
nettement favorable, confirmant son intérét dans des environnements ou le poids prime sur l'efficacité linéaire absolue.
L'accord entre les mesures expérimentales et les prédictions XCOM montre que le composite suit fidelement les lois physiques d'interaction photon-matiere, garantissant une modélisation fiable
pour l'ingénierie. Les analyses SEM et Raman attestent d'une dispersion homogene des nanoplaquettes de graphene, essentielle pour maintenir des performances constantes, tandis que les
conclusions de Shahzad (2023) et Gulbicim (2025) confirment l'intérét général des polymeres renforcés en carbone pour la radioprotection moderne.Ainsi, sans prétendre remplacer le plomb dans
les situations de blindage extréme, le composite Graphene/ABS offre un compromis remarquable entre atténuation massique, faible densité, flexibilité, non-toxicité et facilité de mise en forme. H/
~

apparait comme un excellent candidat pour les systemes mobiles, embarqués ou portables, ouvrant la voie a une nouvelle genération de blindages adaptés aux besoins contemporains.
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