Vieillissement de la cuve sous irradiation et impact sur la stireté a long ‘
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/| — Introduction : La cuve du réacteur constitue un élément fondamental de la sdreté des installations nucléaires. En tant gue barriere principale de confinement du ceeur, elle\
est soumise a des conditions extrémes : flux neutroniques intenses, pressions élevées et cycles thermiques répétés. Au fil du temps, cette exposition induit un vieillissement neutronique et

mécanique susceptible d'altérer ses propriétés structurelles.

Sur le plan neutronique, l'irradiation prolongée par les neutrons rapides provoque la fragilisation par déplacement atomique et la formation de défauts cristallins, modifiant la ténacité du
métal [2].

Sur le plan mécanique, la perte de ductilité et 'augmentation de la température de transition ductile-fragile affectent la résilience de la cuve face aux transitoires thermiques et pressions
accidentelles. L'évaluation des effets de cette fragilisation constitue donc un enjeu majeur pour la durabilité des réacteurs et la démonstration de la slreté a long terme.

Cette étude vise a mettre en évidence les interactions entre phénomenes neutroniques et comportements mécaniques afin de mieux comprendre |'évolution de la cuve tout au long de sa
durée de vie, et d'orienter les stratégies d'exploitation et de surveillance adaptées [2]. /
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La rupture ductile (voir Fig. 3) se caractérise par I'amorcage, la croissance et la ; Ductile des cuves de reacteur, car elle

coalescence de cavités, traduisant une forte déformation plastique avant la | ~ augmente le risque de rupture fragile

séparation du matériau. A linverse, la rupture fragile par clivage (voir Fig. 4) Température en service [1].

implique la nucléation et la propagation rapide d'une fissure selon des plans

: . . : . e . ), . . Fig 6 : Fragilisation sous irradiation des aciers ferriques [1].
cristallographiques, sans absorption significative d'énergie plastique[3].
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IV -Conclusion

L'impact de la sUreté a long terme se traduit principalement par la fragilisation des aciers des cuves de réacteurs nucléaires sous irradiation neutronique, ce qui augmente le risque de

rupture fragile. Cette dégradation mécanique impose des limites a la durée d'exploitation des centrales, nécessitant une surveillance rigoureuse et des modélisations précises pour garantir

I'integrité des composants. La maitrise du vielllissement est essentielle pour prévenir les risques d'accidents graves liés a la perte de résistance des matériaux critiques.
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