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Introduction

Dans le domaine du nucléaire, la slreté repose en grande partie sur la capacité a surveiller en temps réel I'état des installations : température, pression, contraintes mécaniques ou radiations. Les
capteurs traditionnels, comme les thermocouples ou les jauges électriques, présentent toutefois des limites importantes lorsgu’ils sont exposés a des températures élevées ou a des environnements
fortement irradiants. C’est dans ce contexte que les capteurs a fibre optique et plus particulierement les réseaux de Bragg (FBG) apparaissent comme une solution prometteuse et déja performante. Leur
résistance aux hautes températures, leur stabilité sous irradiation et leur capacité de multiplexage en font des outils de surveillance parfaitement adaptés aux environnements nucléaires.

comment exploiter et optimiser ces capteurs a fibre optique tout en maintenant une mesure fiable et juste afin d’assurer la slreté de nos centrales ?

Principe de fonctionnement du capteur FBG (1,2) Résultats expérimentaux (5,3)
Figure 1: Schema du principe de fonctionnement du FBG Figure 4: Décalage spectral des FBG régénérés Figure 5: Décalage de Bragg sous
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e|es variations de température ou de contrainte modifient I'indice de
réfraction et la période du réseau entrainant un décalage spectral
(AAB) selon la relation :

eLe décalage spectral est linéaire, avec ¥8 nm a 600 °C et ~13 nm a 900 °C montrant une excellente sensibilité thermique.
eSous irradiation X jusqu’a 1 MGy, les FBG montrent un décalage de 85-125 pm mais quasi constant une fois normalisé,
indiquant la méme modification d’indice pour tous les capteurs.

AAB=CTxAT+Cex As eCes résultats confirment la robustesse des FBG régénérés et leur capacité a fournir une mesure fiable et reproductible en

. , . , ) , conditions extrémes.
ou CT et Ce sont respectivement les coefficients thermo-optique et élasto-optique.

Effets des radiations et durcissement (3,1) Applications nucléaires (4)
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Durabilité et fiabilité (2)

Les rayonnements ionisants peuvent modifier les propriétés optiques des FBG, entrainant des dérives
spectrales et une perte de réflectivité. Un décalage de quelques picometres sur la longueur de la fibre
entraine une variation mesurable et significative de la valeur finale du parametre étudié. Figure 7: Comportement des FBG pendant le fonctionnement du réacteur
Cependant, les FBG gravés par laser femtoseconde (Type |l) présentent une stabilité remarquable :
leur dérive reste inférieure a 10 pm méme apres une exposition allant jusqu’a 1 MGy, tandis que les
FBG classiques (Type I) subissent des décalages beaucoup plus importants.
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